\(\int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx\) [229]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 17, antiderivative size = 70 \[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}+\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2} \]

[Out]

arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(1/2)+(a-b)*(a+b*tanh(x)^2)^(1/2)/b^2-1/3*(a+b*tanh(x)^2)^(3/
2)/b^2

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 70, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 457, 90, 65, 214} \[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2} \]

[In]

Int[Tanh[x]^5/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b)*Sqrt[a + b*Tanh[x]^2])/b^2 - (a + b*Tanh[x]^
2)^(3/2)/(3*b^2)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {x^5}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {x^2}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right ) \\ & = \frac {1}{2} \text {Subst}\left (\int \left (\frac {a-b}{b \sqrt {a+b x}}+\frac {1}{(1-x) \sqrt {a+b x}}-\frac {\sqrt {a+b x}}{b}\right ) \, dx,x,\tanh ^2(x)\right ) \\ & = \frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {1}{2} \text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right ) \\ & = \frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac {\text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b} \\ & = \frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}+\frac {(a-b) \sqrt {a+b \tanh ^2(x)}}{b^2}-\frac {\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.97 \[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}+\frac {(a-b+(a-2 b) \cosh (2 x)) \text {sech}^2(x) \sqrt {a+b \tanh ^2(x)}}{3 b^2} \]

[In]

Integrate[Tanh[x]^5/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b + (a - 2*b)*Cosh[2*x])*Sech[x]^2*Sqrt[a + b*T
anh[x]^2])/(3*b^2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(163\) vs. \(2(58)=116\).

Time = 0.12 (sec) , antiderivative size = 164, normalized size of antiderivative = 2.34

method result size
derivativedivides \(-\frac {\sqrt {a +b \tanh \left (x \right )^{2}}}{b}-\frac {\tanh \left (x \right )^{2} \sqrt {a +b \tanh \left (x \right )^{2}}}{3 b}+\frac {2 a \sqrt {a +b \tanh \left (x \right )^{2}}}{3 b^{2}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}\) \(164\)
default \(-\frac {\sqrt {a +b \tanh \left (x \right )^{2}}}{b}-\frac {\tanh \left (x \right )^{2} \sqrt {a +b \tanh \left (x \right )^{2}}}{3 b}+\frac {2 a \sqrt {a +b \tanh \left (x \right )^{2}}}{3 b^{2}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}\) \(164\)

[In]

int(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(a+b*tanh(x)^2)^(1/2)/b-1/3*tanh(x)^2/b*(a+b*tanh(x)^2)^(1/2)+2/3*a/b^2*(a+b*tanh(x)^2)^(1/2)+1/2/(a+b)^(1/2)
*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1))+1/2/(a+b)
^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1131 vs. \(2 (58) = 116\).

Time = 0.43 (sec) , antiderivative size = 2827, normalized size of antiderivative = 40.39 \[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\text {Too large to display} \]

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(3*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2
)*sinh(x)^4 + 3*b^2*cosh(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cos
h(x)^2 + b^2)*sinh(x)^2 + b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(a + b)*log(((a
^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x
)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^
2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*
a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^
2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3
 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b -
 b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)
^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x
))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*s
inh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*
sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
+ 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*
a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^
3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 3*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*si
nh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^2*cosh(x)^2 + 4*(5*b^2*c
osh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh(x)^2 + b^2 + 6*(b^2*cos
h(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(
x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh
(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*c
osh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(
x) + sinh(x)^2)) + 8*sqrt(2)*((a^2 - a*b - 2*b^2)*cosh(x)^4 + 4*(a^2 - a*b - 2*b^2)*cosh(x)*sinh(x)^3 + (a^2 -
 a*b - 2*b^2)*sinh(x)^4 + 2*(a^2 - b^2)*cosh(x)^2 + 2*(3*(a^2 - a*b - 2*b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2
+ a^2 - a*b - 2*b^2 + 4*((a^2 - a*b - 2*b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2
 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^
2 + b^3)*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + 3*(a*b^2 + b^3)*cosh(x)^4 + 3*(a*b^2 + b^3 + 5*(a*b^2 +
 b^3)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 +
 3*(a*b^2 + b^3)*cosh(x)^2 + 3*(5*(a*b^2 + b^3)*cosh(x)^4 + a*b^2 + b^3 + 6*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2
 + 6*((a*b^2 + b^3)*cosh(x)^5 + 2*(a*b^2 + b^3)*cosh(x)^3 + (a*b^2 + b^3)*cosh(x))*sinh(x)), -1/6*(3*(b^2*cosh
(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^
2*cosh(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh
(x)^2 + b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x
)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a
- b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (
a^2 + a*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2
 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + 3*(b^2*cosh(x)^6
+ 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^2*cosh
(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh(x)^2
+ b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*
cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2
- 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a
- b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) +
 a + b)) - 4*sqrt(2)*((a^2 - a*b - 2*b^2)*cosh(x)^4 + 4*(a^2 - a*b - 2*b^2)*cosh(x)*sinh(x)^3 + (a^2 - a*b - 2
*b^2)*sinh(x)^4 + 2*(a^2 - b^2)*cosh(x)^2 + 2*(3*(a^2 - a*b - 2*b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2 + a^2 -
a*b - 2*b^2 + 4*((a^2 - a*b - 2*b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2 + (a +
b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)
*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + 3*(a*b^2 + b^3)*cosh(x)^4 + 3*(a*b^2 + b^3 + 5*(a*b^2 + b^3)*co
sh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + 3*(a*b^
2 + b^3)*cosh(x)^2 + 3*(5*(a*b^2 + b^3)*cosh(x)^4 + a*b^2 + b^3 + 6*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + 6*((a
*b^2 + b^3)*cosh(x)^5 + 2*(a*b^2 + b^3)*cosh(x)^3 + (a*b^2 + b^3)*cosh(x))*sinh(x))]

Sympy [F]

\[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int \frac {\tanh ^{5}{\left (x \right )}}{\sqrt {a + b \tanh ^{2}{\left (x \right )}}}\, dx \]

[In]

integrate(tanh(x)**5/(a+b*tanh(x)**2)**(1/2),x)

[Out]

Integral(tanh(x)**5/sqrt(a + b*tanh(x)**2), x)

Maxima [F]

\[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\int { \frac {\tanh \left (x\right )^{5}}{\sqrt {b \tanh \left (x\right )^{2} + a}} \,d x } \]

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^5/sqrt(b*tanh(x)^2 + a), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 592 vs. \(2 (58) = 116\).

Time = 0.67 (sec) , antiderivative size = 592, normalized size of antiderivative = 8.46 \[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=-\frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {8 \, {\left (3 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{5} + 3 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{4} \sqrt {a + b} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{3} {\left (3 \, a - 5 \, b\right )} + 6 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} \sqrt {a + b} {\left (a - 3 \, b\right )} - 3 \, {\left (3 \, a^{2} + 6 \, a b - 13 \, b^{2}\right )} {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} - {\left (9 \, a^{2} - 22 \, a b + 17 \, b^{2}\right )} \sqrt {a + b}\right )}}{3 \, {\left ({\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )}^{2} + 2 \, {\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} \sqrt {a + b} + a - 3 \, b\right )}^{3}} \]

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b)
- sqrt(a + b)*(a - b)))/sqrt(a + b) + 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2
*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b
*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b)))/sqrt(a + b) - 8/3*(3*(sqrt(a + b)*e^(2*x) - sqrt
(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^5 + 3*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e
^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^4*sqrt(a + b) + 2*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*
x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^3*(3*a - 5*b) + 6*(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) +
 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2*sqrt(a + b)*(a - 3*b) - 3*(3*a^2 + 6*a*b - 13*b^2)*(sqrt(a + b)*e^(2*x)
 - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b)) - (9*a^2 - 22*a*b + 17*b^2)*sqrt(a + b))/(
(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))^2 + 2*(sqrt(a + b)*e^(
2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*sqrt(a + b) + a - 3*b)^3

Mupad [B] (verification not implemented)

Time = 2.68 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.93 \[ \int \frac {\tanh ^5(x)}{\sqrt {a+b \tanh ^2(x)}} \, dx=\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {{\left (b\,{\mathrm {tanh}\left (x\right )}^2+a\right )}^{3/2}}{3\,b^2}-\left (\frac {a+b}{b^2}-\frac {2\,a}{b^2}\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a} \]

[In]

int(tanh(x)^5/(a + b*tanh(x)^2)^(1/2),x)

[Out]

atanh((a + b*tanh(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(1/2) - (a + b*tanh(x)^2)^(3/2)/(3*b^2) - ((a + b)/b^2 -
(2*a)/b^2)*(a + b*tanh(x)^2)^(1/2)